
Dielectric Properties of Continuous Media: The 
Lorentz-Debye-Sack Theory 

 
Ionic and Dipolar Solutes in Polar/Polarizable Solvents 
 
Consider an ion or a dipole immersed into a solvent composed of molecules 
with isotropic polarizabilities α  and permanent dipole moments µ. 
Regardless of its nature, the solute creates a field that orients and polarizes 
the surrounding molecules of the solvent. The Lorentz-Debye-Sack (LDS) 
theory of liquids relies on the following basic equations of electrostatics: 
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where D(r) and E(r) are the displacement and the macroscopic (Maxwell) 
electric field at position r in the solvent, P(r) is the polarization at position r 
in the solvent, and  is the local electric field acting on individual 
solvent molecules at position r; v is the molecular volume of the molecules 
of the solvent. In Eq.(3) the factor 
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)(Ωf  is the average of the orientation-
dependent function of the solute-solvent interaction energy w, which 
depends on the source (i.e., ion or dipole) 
 
Combining Eqs.(1) and (2) an expression for the local field is obtained, 
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known as the Lorentz relationship. In the Debye-Sack approach to obtain 
ε(r), Eqs.(1)-(3) are combined, to eliminate P(r) and obtain the macroscopic 
fields E(r) and D(r) as a function of the local field  only: )(rEl









+−= µ

Ω
rErErE

v
f

v ll
)(

)(
3

4)()( απ      (5) 









++= µ

Ω
rErErD

v
f

v ll
)(

)(
3

8)()( απ      (6) 

IONIC SOURCE:  
For the case of an ion, the orienting function is given by f(Ω)=f(θ)=cosθ, 
where θ is the angle formed by vectors r and µ (i.e., r•µ=rµcosθ). The ion-



dipole interaction energy is given by w=-µ cosθ and, therefore, the 
Boltzman average yields 
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)(Ωf = θcos =L(µ /kT), where k is the 

Boltzmann constant and L(x)≡coth(x)-1/x is the Langevin function. 
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Combining Eqs.(4)-(6), using D(r)=ε(r)E(r), and noting that, for an ion, 

, where q is the charge of the ion and ε(r) is the dielectric 
function that characterizes the system at position r, an implicit equation for 
ε(r) is obtained that depends only on the distance r to the central ion, i.e., 
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Iterative or numerical solutions of this equation yield dielectric functions of 
the sigmoidal form (see below). An important observation is that, for pure 
solvent, the dielectric function ε(r) is obtained from measurable quantities 
only, because the polarizability and dipole moment of the solvent are 
obtained from macroscopic measurements: 
 
The Lorenz-Lorentz relationship connects the polarizability of the solvent 
molecules with the high-frequency dielectric constant ∞ε  (or optical 
permittivity optε ; note that this relationship is more appropriate than the 
Claussius-Mossoti equation, that is valid only in the case µ=0), i.e., 
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On the other hand, far from the source Eq.(7) has to describe the static 
dielectric permittivity of pure bulk solvent sε  and, therefore, µ is given by 
(note that L(x)~x/3 as r→∞) 
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DIPOLAR SOURCE:  
For the case of a dipole source the derivation above is conceptually similar 
but mathematically more cumbersome. If the source dipole is characterized 
by a permanent dipole moment µ , the electric field is given by s
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where r is the position of the center of µ  relative to the center of . At any 
given instant, the interaction energy between the dipole source and the 

sµ



dipole of a solvent molecule is , 
where θ is the angle formed by vectors r and µ (i.e., r•µ=rµcosθ, as in the 
case of the ion above), γ is the angle formed by vectors r and µ  (i.e., 
r• =r cosγ) and φ is the dihedral angle defined by both dipole moments, 
referenced to the vector r that connects their centers.  

)cossinsincoscos2(3 φθγθγµµ −−= −rw s

s

sµ sµ

)(Ωf

)(rlE

[ ] [ ]







 +
++

)(3
2)(2)(22 3

3

rkTr
rLrr

vv
s

s ε
εµµε

µ
πµα+== )(

3
41)() rr επε(ε r

(Ωf
(Ω

 
In this case the calculation of  is not straightforward and a general 
analytical solution is difficult to obtain. Under the approximation of small 
dipole field, )(Ωf =2 cosγ L(µ /kT) and, as expected, the spherical 
symmetry that led to Eq.(7) now is broken and ε(r) depends on the position r 
in the solvent. In many cases, measurements in real systems require a 
Boltzmann average to be taken also on all the orientations of the source 
dipole, i.e., on all possible angles γ. When this calculations is performed an 
expression similar to Eq.(7) is obtained, i.e., 

    (10) 

Although this equation is slightly different than Eq.(7), both dielectric 
functions are of the sigmoidal shape as it is discussed below, and its precise 
form can be obtained from physically measurable quantities only, with no 
adjustable parameters. 
 
Reaction Field Effects 
Onsager noticed that the values of µ of molecules in the liquid phase 
obtained from the LDS theory [cf.Eq.(9); note that the same expression is 
derived from Eq.(10)] were too small, even smaller than in the gas phase 
(e.g., for water it was calculated to be 0.82D, compared gas phase value of 
1.87D) and attributed this problem to a misinterpretation of the effect of the 
local field . Onsager proposed that only part of the local field created 
by a dipolar solute should be used to calculate the second average in 

)(rEl

)
)rE

. Böttcher quantified this statement showing that the directing field 
 is given by 
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where R(r) is the reaction field. Onsager showed that the reaction field can 
be expressed as 
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i.e., in this original approximation, it is independent of the position, although 
a local reaction field R(r) at position r can be defined by replacing sε  by 
ε(r) in Eq.(12). After some algebra a corrected Eq.(10) is obtained that is 
given by 
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In the case of an ion there is no reaction field implications because of the 
central symmetry of the charge distribution. However, it might happen that 
local, instantaneous fluctuations of the charge distribution that forms the ion 
(due mainly to interactions with the neighbor solvent molecules) can result 
in a local dipolar moment. Therefore, corrections due to reaction field might 
need to be considered even in this case, and the corrected equation for the 
dielectric function ε(r) was shown to be 
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Numerical Calculation of dielectric Function in Pure Liquids 

 
Equations (7) and (14) have been solved numerically to obtain ε(r) in some 
common solvents. This was carried out to analyze the dependence of ε(r) on 

charge, nature of the solvent and the 
reaction field corrections. Figure 1 
shows dielectric functions for 
formamide, water and acetone created 
by a charge q=e, showing the typical 
sigmoidal behavior that is 
characteristic not only of point charge 
solutes, but also of dipolar sources 
(taken from Ref.[2]). The effect of the 
reaction field corrections is to shift 
the profile towards smaller values of 
r. The rate of increase is relatively 
slow even when reaction field is 
introduced: for water, e.g., bulk 
dielectric constant sε  is reached only 
at a distance r~6Å (corrected) and 

r~15Å (uncorrected). A detailed analysis shows that ε(r) increases more 
slowly with distance as the charge of the ion increases: for water, for 

Figure 1: Dielectric functions for formamide (thick
lines), water (medium), and acetone (thin). Solid
lines: ε(r) calculated from Eq.(7); dashed lines: ε(r)
calculated with Eq.(14) that includes the reaction
field corrections (R(r) was calculated with the local
approximation derived from Eq.(12) 



example, a change from q=e to q=2e lowers the dielectric value from 25 to 
less than 10 at r~5Å, and from 70 to 50 at r~10Å.  
 
For a dipolar source, the qualitative behavior of ε(r) is similar to the case of 
the ion, but the increase of ε(r) with the distance is much faster than shown 
in Figure 1. For example, for water, the bulk dielectric is reached at r~5Å for 
a source dipole µs=1D, and r~6Å for µs=2D. The effect of increasing the 
value of µs on the strength of the dielectric is similar than in the point 
charge, e.g., in water, an increase from µs=1D to µs=2D results in a decrease 
of ε(r) from 60 to 40 at r~3Å. 
 
Energetic of Ion Solvation 
When an ion is immersed in a polar/polarizable solvent like water it 
polarizes the medium and creates sigmoidal dielectric profiles as discussed 
above. Since the dielectric is not constant, the original Born approximation 
is adapted for this inhomogeneous case described by the LDS theory: 
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where R is the lower limit of integration. If the usual form of the Born 
equations is to be used, an effective Born radius Reff has to be defined such 
that 
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Solving Eq.(15) with ε(r) given by Eq.(14) shows that the difference Reff – R 
is positive and decreases as R increases; moreover, the larger the value of the 
charge q, the larger the difference Reff – R for any given R (note, then, that if 
Reff is independent of the charge q, R must be dependent on the charge). 
 
The fundamentals of the theory outlined above and also its relation with 
electrostatics in macromolecules is described in details in the following 
articles: 
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